https://doi.org/10.1140/epjc/s10052-024-12535-w
Regular Article - Theoretical Physics
Superluminal propagation along the brane in space with extra dimensions
1
Department of Physics, National Dong Hwa University, Hualien, Taiwan, Republic of China
2
CERCA, Department of Physics, Case Western Reserve University, 44106-7079, Cleveland, OH, USA
3
HEPCOS, Department of Physics, SUNY at Buffalo, 14260-1500, Buffalo, NY, USA
Received:
19
December
2023
Accepted:
8
February
2024
Published online:
20
February
2024
We demonstrate that a model with extra dimensions formulated in Csaki et al. (Phys Rev D 62:045015, 2000), which fatefully reproduces Friedmann–Robertson–Walker (FRW) equations on the brane, allows for an apparent superluminal propagation of massless signals. Namely, a massive brane curves the spacetime and affects the trajectory of a signal in a way that allows a signal sent from the brane through the bulk to arrive (upon returning) to a distant point on the brane faster than the light can propagate along the brane. In particular, the signal sent along the brane suffers a greater gravitational time delay than the bulk signal due to the presence of matter on the brane. While the bulk signal never moves with the speed greater than the speed of light in its own locality, this effect still enables one to send signals faster than light from the brane observer’s perspective. For example, this effect might be used to resolve the cosmological horizon problem. In addition, one of the striking observational signatures would be arrival of the same gravitational wave signal at two different times, where the first signals arrives before its electromagnetic counterpart. We used GW170104 gravitational wave event to impose a strong limit on the model with extra dimensions in question.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.