https://doi.org/10.1140/epjc/s10052-024-12481-7
Regular Article - Theoretical Physics
Uncertainty principle from the noise of gravitons
Department of Astrophysics and High Energy Physics, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, 700 106, Kolkata, India
Received:
16
December
2023
Accepted:
26
January
2024
Published online:
3
February
2024
The effect of the noise induced by gravitons in the case of a freely falling particle from the viewpoint of an external observer has been recently calculated in Phys. Rev. D 107, 066024 (2023). There the authors have calculated the quantum gravity modified Newton’s law of free fall where the spacetime has been considered to be weakly curved. In our work, we extend this work by calculating the variance in the velocity and eventually the momentum of the freely falling massive particle. From this simple calculation, we observe that the product of the standard deviation in the position with that of the standard deviation in momentum picks up a higher order correction which is proportional to the square of the standard deviation in momentum. We also find out that in the Planck limit (both Planck length and Planck mass), this uncertainty product gives the well-known form of the generalized uncertainty principle. We then calculate a similar uncertainty product when the graviton is in a squeezed state, and eventually, we get back the same uncertainty product. Finally, we extend our analysis for the gravitons being in a thermal state and obtain a temperature-dependent uncertainty product. If one replaces this temperature with the Planck temperature and the mass of the particle by the Planck mass, the usual uncertainty product appears once again. We also obtain an upper bound of the uncertainty product thereby giving a range of the product of the variances in position and momentum.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.