https://doi.org/10.1140/epjc/s10052-023-12230-2
Regular Article - Theoretical Physics
Minimal length scale correction in the noise of gravitons
Department of Astrophysics and High Energy Physics, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, 700 106, Salt Lake City, Kolkata, India
Received:
20
June
2023
Accepted:
5
November
2023
Published online:
16
November
2023
In this paper we have considered a quantized and linearly polarized gravitational wave interacting with a gravitational wave detector (interferometer detector) in the generalized uncertainty principle (GUP) framework. Following the analysis in Phys. Rev. Lett. 127:081602 (2021), we consider a quantized gravitational wave interacting with a gravitational wave detector (LIGO/VIRGO etc.) using a path integral approach. Although the incoming gravitational wave was quantized, no Planck-scale quantization effects were considered for the detector in earlier literatures. In our work, we consider a modified Heisenberg uncertainty relation with a quadratic order correction in the momentum variable between the two phase space coordinates of the detector. Using a path integral approach, we have obtained a stochastic equation involving the separation between two point-like objects. It is observed that random fluctuations (noises) and the correction terms due to the generalized uncertainty relation plays a crucial role in dictating such trajectories. Finally, we observe that the solution to the stochastic equation leads to time dependent standard deviation due to the GUP insertion, and for a primordial gravitational wave (where the initial state is a squeezed state) both the noise effect and the GUP effects exponentially enhance which may be possible to detect in future generation of gravitational wave detectors. We have also given a plot of the dimensionless standard deviation with time depicting that the GUP effect will carry a distinct signature which may be detectable in the future space based gravitational wave observatories.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.