https://doi.org/10.1140/epjc/s10052-024-12424-2
Regular Article - Theoretical Physics
AMY Lorentz invariant parton cascade: the thermal equilibrium case
1
Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway
2
Department of Physics, Lund University, Box 118, 221 00, Lund, Sweden
b
robin.tornkvist@hep.lu.se
c
korinna.zapp@hep.lu.se
Received:
29
August
2023
Accepted:
10
January
2024
Published online:
24
January
2024
We introduce the parton cascade Alpaca, which evolves parton ensembles corresponding to single events according to the effective kinetic theory of QCD at high temperature formulated by Arnold, Moore and Yaffe by explicitly simulating elastic scattering, splitting and merging. By taking the ensemble average over many events the phase space density (as evolved by the Boltzmann equation) is recovered, but the parton cascade can go beyond the evolution of the mean because it can be turned into a complete event generator that produces fully exclusive final states including fluctuations and correlations. The parton cascade does not require the phase space density as input (except for the initial condition at the starting time). Rather, effective masses and temperature, which are functions of time and are defined as integrals over expressions involving the distribution function, are estimated in each event from just the parton ensemble of that event. We validate the framework by showing that ensembles sampled from a thermal distribution stay in thermal equilibrium even after running the simulation for a long time. This is a non-trivial result, because it requires all parts of the simulation to intertwine correctly.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.