https://doi.org/10.1140/epjc/s10052-023-12379-w
Regular Article – Theoretical Physics
Shadow of higher dimensional collapsing dark star and blackhole
Department of Physics, Presidency University, 86/1 College Street, 700073, Kolkata, India
c
ratna.physics@presiuniv.ac.in
Received:
28
September
2023
Accepted:
23
December
2023
Published online:
18
January
2024
The shadow of a black hole or a collapsing star is of great importance as we can extract important properties of the object and of the surrounding spacetime from the shadow profile. It can also be used to distinguish different types of black holes and ultra compact objects. In this work, we have analytically calculated the shadow of a higher dimensional collapsing dark star, described by higher dimensional Vaidya metric, by choosing a slightly generalized version of Misner–Sharp mass function. We have also numerically investigated the properties of the shadows of the black holes and the collapsing stars for a slightly more general mass function. Examining the potential influence of extra spatial dimensions on the shadow, we have explored the possibility of distinguishing higher dimensions from the standard four-dimensional spacetime.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.