https://doi.org/10.1140/epjc/s10052-023-12330-z
Regular Article - Theoretical Physics
Viscous effect in the late time evolution of phantom universe
Division of Mathematics and Theoretical Physics, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai, China
Received:
11
October
2023
Accepted:
2
December
2023
Published online:
19
December
2023
We investigate the cosmological implications of a phantom dark energy model with bulk viscosity. We explore this model as a possible way to resolve the big rip singularity problem that plagues the phantom models. We use the latest type Ia supernova and Hubble parameter data to constrain the model parameters and find that the data favor a significant bulk viscosity over a non-constant potential term for the phantom field. We perform a dynamical analysis of the model and show that the only stable and physical attractor corresponds to a phantom-dominated era with a total equation of state that can be greater than due to the viscosity. We also study the general effect of viscosity on the phantom field and the late time evolution of the universe. We apply the statefinder diagnostic to the model and find that it approaches a nearby fixed point asymptotically, indicating that the universe can escape the big rip singularity with the presence of bulk viscosity. We conclude that bulk viscosity can play an important role in affecting the late-time behavior as well as alleviating the singularity problem of the phantom universe.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.