https://doi.org/10.1140/epjc/s10052-020-08688-z
Regular Article – Theoretical Physics
Holographic subregion complexity in metal/superconductor phase transition with Born–Infeld electrodynamics
Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081, Changsha, Hunan, People’s Republic of China
Received:
28
September
2020
Accepted:
18
November
2020
Published online:
1
December
2020
We investigate the holographic subregion complexity (HSC) and compare it with the holographic entanglement entropy (HEE) in the metal/superconductor phase transition for the Born–Infeld (BI) electrodynamics with full backreaction. Based on the subregion CV conjecture, we find that the universal terms of HSC remain finite during phase transitions, and the HSC is a good probe to the critical temperature in the holographic superconducting system. Furthermore, we observe that for the operator , the HSC of the superconducting phase decreases first and then increases as the BI parameter increases, which is completely different from that of HEE, and the value of the BI parameter corresponding to the inflection point of HSC is larger than that of HEE. But for the operator
, the HSC increases monotonically as the BI parameter increases, which is similar to that of HEE.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3