https://doi.org/10.1140/epjc/s10052-023-12214-2
Regular Article - Theoretical Physics
Stability analysis of anisotropic stars in f(R, T) gravity through cracking technique
1
Department of Mathematics, GCWUF, Faisalabad, Pakistan
2
Department of Mathematics, UMT, Lahore, Pakistan
Received:
11
August
2023
Accepted:
31
October
2023
Published online:
18
November
2023
In this article, cracking technique is developed for spherically symmetric compact sources in the framework of f(R, T) gravity, where R denotes Ricci scalar and T stands for trace of energy momentum tensor. The characteristics of a star with anisotropic pressure stresses are investigated by utilizing the Tolman–Kuchowicz spacetime solutions. Modified field equations are developed for a particular model i.e., , where
is constant, that are further used to develop expressions for matter density, radial and tangential pressures. A generalized form of the Tolman Oppenheimer Volkoff (TOV) equation is developed for the modified field equations. The consequence of the local density perturbation scheme, as presented by Biswas et al. (Eur Phys J C 80:175, 2020) is considered. The mathematical framework for cracking has been tested on five realistic stars namely, Vela X-1, Cen X-3, SMC X-1, PSR J1614-2230 and PSR J1903+327. The graph of forces distribution of these stars have been observed to check the stability regions. The results of cracking/overturning for various values of the parameters involved in this model are observed by checking the instability regions in the form intervals.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.