https://doi.org/10.1140/epjc/s10052-023-12117-2
Regular Article – Experimental Physics
Destroying the event horizon of a rotating black-bounce black hole
College of Physics, Guizhou University, 550025, Guiyang, China
Received:
31
August
2023
Accepted:
4
October
2023
Published online:
18
October
2023
For a rotating black hole to be nonsingular, it means that there are no spacetime singularities at its center. The destruction of the event horizon of such a rotating black hole is not constrained by the weak cosmic censorship conjecture, which may provide possibilities to understand the internal structure of black hole event horizons. In this paper, we employ test particles with large angular momentum and a scalar field with large angular momentum to investigate the potential of destroying the event horizon of rotating black-bounce black holes. Additionally, we investigate the possibility of destroying the event horizon of a rotating black-bounce black hole by considering test particles with large angular momentum and scalar fields with large angular momentum, covering the entire range of the rotating black-bounce black hole. We analyze the influence of the parameter m on the possibility of destroying the event horizon in this spacetime. Our analysis reveals that under extreme or near-extreme conditions, the event horizon of this spacetime can potentially be destroyed after the absorption of particles energy and angular momentum, as well as the scattering of scalar fields. Additionally, we find that as the parameter m increases, the event horizon of this spacetime model becomes more susceptible to destruction after the injection of test particles or the scattering of scalar fields.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.