https://doi.org/10.1140/epjc/s10052-023-11989-8
Regular Article - Theoretical Physics
Elsa: enhanced latent spaces for improved collider simulations
1
Physics Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
2
Berkeley Institute for Data Science, University of California, 94720, Berkeley, CA, USA
3
CP3, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
b
ramon.winterhalder@uclouvain.be
Received:
23
May
2023
Accepted:
29
August
2023
Published online:
22
September
2023
Simulations play a key role for inference in collider physics. We explore various approaches for enhancing the precision of simulations using machine learning, including interventions at the end of the simulation chain (reweighting), at the beginning of the simulation chain (pre-processing), and connections between the end and beginning (latent space refinement). To clearly illustrate our approaches, we use W + jets matrix element surrogate simulations based on normalizing flows as a prototypical example. First, weights in the data space are derived using machine learning classifiers. Then, we pull back the data-space weights to the latent space to produce unweighted examples and employ the Latent Space Refinement (Laser) protocol using Hamiltonian Monte Carlo. An alternative approach is an augmented normalizing flow, which allows for different dimensions in the latent and target spaces. These methods are studied for various pre-processing strategies, including a new and general method for massive particles at hadron colliders that is a tweak on the widely-used RamboOnDiet mapping. We find that modified simulations can achieve sub-percent precision across a wide range of phase space.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.