https://doi.org/10.1140/epjc/s10052-024-13135-4
Regular Article - Experimental Physics
Designing observables for measurements with deep learning
1
Department of Physics and Astronomy, University of California, 92521, Riverside, CA, USA
2
Physics Division, Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
3
Berkeley Institute for Data Science, University of California, 94720, Berkeley, CA, USA
Received:
16
October
2023
Accepted:
18
July
2024
Published online:
4
August
2024
Many analyses in particle and nuclear physics use simulations to infer fundamental, effective, or phenomenological parameters of the underlying physics models. When the inference is performed with unfolded cross sections, the observables are designed using physics intuition and heuristics. We propose to design targeted observables with machine learning. Unfolded, differential cross sections in a neural network output contain the most information about parameters of interest and can be well-measured by construction. The networks are trained using a custom loss function that rewards outputs that are sensitive to the parameter(s) of interest while simultaneously penalizing outputs that are different between particle-level and detector-level (to minimize detector distortions). We demonstrate this idea in simulation using two physics models for inclusive measurements in deep inelastic scattering. We find that the new approach is more sensitive than classical observables at distinguishing the two models and also has a reduced unfolding uncertainty due to the reduced detector distortions.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.