https://doi.org/10.1140/epjc/s10052-023-11939-4
Regular Article - Theoretical Physics
Dilaton-induced open quantum dynamics
Technische Universität Wien, Atominstitut, Stadionallee 2, 1020, Vienna, Austria
a
christian.kaeding@tuwien.ac.at
Received:
6
July
2023
Accepted:
8
August
2023
Published online:
31
August
2023
In modern cosmology, scalar fields with screening mechanisms are often used as explanations for phenomena like dark energy or dark matter. Amongst a zoo of models, the environment dependent dilaton, screened by the Polyakov–Damour mechanism, is one of the least constrained ones. Using recently developed path integral tools for directly computing reduced density matrices, we study the open quantum dynamics of a probe, modelled by another real scalar field, induced by interactions with an environment comprising fluctuations of a dilaton. As the leading effect, we extract a correction to the probe’s unitary evolution, which can be observed as a frequency shift. Assuming the scalar probe to roughly approximate a cold atom in matter wave interferometry, we show that comparing the predicted frequency shifts in two experimentally distinct setups has the potential to exclude large parts of the dilaton parameter space.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.