https://doi.org/10.1140/epjc/s10052-023-11420-2
Regular Article - Theoretical Physics
Self-bound embedding Class I anisotropic stars by gravitational decoupling within vanishing complexity factor formalism
1
Department of Mathematical and Physical Sciences, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
2
Department of Physics, Zhejiang Normal University, 321004, Jinhua, People’s Republic of China
Received:
22
February
2023
Accepted:
19
March
2023
Published online:
11
April
2023
We present a spherically symmetric embedding Class I solution for compact star models using the gravitational decoupling approach. We have chosen a null complexity factor condition proposed by Herrera (Phys Rev D 97:044010, 2018) in the context of a self-gravitating system and derive the anisotropic solution through a systematic approach given by Contreras and Stuchlik (Eur Phys J C 82:706, 2022). In this regard, we use the Finch–Skea model along with the mimicking of mass constraint to find fluid pressure and the matter-energy density from the Einstein Field Equations (EFE). We tested the physical viability and impact of gravitational decoupling on the anisotropic solution through the graphical representation. Moreover, the energy exchange between the fluid distributions along with the mass-radius ratio of different compact objects has been also discussed.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.