https://doi.org/10.1140/epjc/s10052-023-11237-z
Regular Article - Theoretical Physics
Non-metric geometry as the origin of mass in gauge theories of scale invariance
Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering (IFIN), 077125, Bucharest, Romania
Received:
9
April
2022
Accepted:
21
January
2023
Published online:
23
February
2023
We discuss gauge theories of scale invariance beyond the Standard Model (SM) and Einstein gravity. A consequence of gauging this symmetry is that their underlying 4D geometry is non-metric (). Examples of such theories are Weyl’s original quadratic gravity theory and its Palatini version. These theories have spontaneous breaking of the gauged scale symmetry to Einstein gravity. All mass scales have a geometric origin: the Planck scale (
), cosmological constant (
) and the mass of the Weyl gauge boson (
) of scale symmetry are proportional to a scalar field vev that has an origin in the (geometric)
term in the action. With
of non-metric geometry origin, the SM Higgs field also has a similar origin, generated by Weyl boson fusion in the early Universe. This appears as a microscopic realisation of “matter creation from geometry” discussed in the thermodynamics of open systems applied to cosmology. Unlike in local scale invariant theories (with no
present) with an underlying pseudo-Riemannian geometry, in our case: (1) there are no ghosts and no additional fields beyond the SM and underlying Weyl or Palatini geometry, (2) the cosmological constant is positive and is small because gravity is weak, (3) the Weyl or Palatini connection shares the Weyl (gauge) symmetry of the action, and: (4) there exists a non-trivial, conserved Weyl current of this symmetry. An intuitive picture of non-metricity and its relation to mass generation is also provided from a solid state physics perspective where it is common and is associated with point defects (metric anomalies) of the crystalline structure.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.