https://doi.org/10.1140/epjc/s10052-023-11198-3
Regular Article - Theoretical Physics
Radial pulsations, moment of inertia and tidal deformability of dark energy stars
Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 URCA, CEP 22290-180, Rio de Janeiro, RJ, Brazil
Received:
27
October
2022
Accepted:
4
January
2023
Published online:
16
January
2023
We construct dark energy stars with Chaplygin-type equation of state (EoS) in the presence of anisotropic pressure within the framework of Einstein gravity. From the classification established by Iyer et al. (Class Quantum Grav 2:219, 1985), we discuss the possible existence of isotropic dark energy stars as compact objects. However, there is the possibility of constructing ultra-compact stars for sufficiently large anisotropies. We investigate the stellar stability against radial oscillations, and we also determine the moment of inertia and tidal deformability of these stars. We find that the usual static criterion for radial stability still holds for dark energy stars since the squared frequency of the fundamental pulsation mode vanishes at the critical central density corresponding to the maximum-mass configuration. The dependence of the tidal Love number on the anisotropy parameter
is also examined. We show that the surface gravitational redshift, moment of inertia and dimensionless tidal deformability undergo significant changes due to anisotropic pressure, primarily in the high-mass region. Furthermore, in light of the detection of gravitational waves GW190814, we explore the possibility of describing the secondary component of such event as a stable dark energy star in the presence of anisotropy.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.