https://doi.org/10.1140/epjc/s10052-022-10973-y
Regular Article - Theoretical Physics
Moduli stabilization with bulk scalar in nested doubly warped braneworld model
1
Physics and Applied Mathematics Unit, Indian Statistical Institute, 700108, Kolkata, India
2
School of Physical Sciences, Indian Association for the Cultivation of Science, 700032, Kolkata, India
Received:
22
May
2022
Accepted:
29
October
2022
Published online:
30
November
2022
We examine the modulus stabilization mechanism of a warped geometry model with nested warping. Such a model with multiple moduli is known to offer a possible resolution of the fermion mass hierarchy problem in the Standard Model. A six dimensional doubly warped braneworld model under consideration admits two distinct moduli, with the associated warp factors dynamically generating different physical mass scales on four 3-branes. In order to address the hierarchy problem related to the Higgs mass, both moduli need to be stabilized around their desired values without any extreme fine tuning of parameters. We show that it is possible to stabilize them simultaneously due to the appearence of an effective 4D moduli potential, which is generated by a single massive bulk scalar field having non-zero VEVs frozen on the 3-branes. This gives rise to two scalar radions, one of which has mass slightly below (TeV) and couplings to SM fields proportional to the inverse of its
(TeV) VEV, and the other has nearly
mass and interactions with SM fields suppressed by the Planck scale. We also discuss how the entire mechanism can possibly be understood from a purely gravitational point of view, with higher curvature f(R) contributions in the bulk automatically providing a scalar degree of freedom that can serve as the stabilizing field in the Einstein frame.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.