https://doi.org/10.1140/epjc/s10052-022-10745-8
Regular Article - Theoretical Physics
Detailed analysis of the curvature bounce: background dynamics and imprints in the CMB
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, 53, avenue des Martyrs, 38026, Grenoble cedex, France
Received:
18
June
2022
Accepted:
22
August
2022
Published online:
1
September
2022
If the spatial sections of the Universe are positively curved, extrapolating the inflationary stage backward in time inevitably leads to a classical bounce. This simple scenario, non-singular and free of exotic physics, deserves to be investigated in details. The background dynamics exhibits interesting features and is shown to be mostly insensitive to initial conditions as long as observational consequences are considered. The primordial scalar power spectrum is explicitly computed, for different inflaton potentials, and the subsequent CMB temperature anisotropies are calculated. The results are compatible with current measurements. Some deviations with respect to the standard paradigm can however appear at large scales and we carefully disentangle what is associated with the vacuum choice with what is more fundamentally due to the bounce itself.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.