https://doi.org/10.1140/epjc/s10052-020-7610-x
Regular Article - Theoretical Physics
Primordial gravitational waves spectrum in the Coupled-Scalar-Tachyon Bounce Universe
1
Department of Physics, Nanjing University, 22 Hankou Road, 210093, Nanjing, China
2
Institute of Nuclear and Particle Physics, Demokritos National Research Centre, Athens, Greece
Received:
5
April
2019
Accepted:
3
January
2020
Published online:
6
February
2020
We extend our study on the Coupled-Scalar-Tachyon Bounce Universe to obtain its gravitational waves spectrum. We derive in detail the equations of motion for the tensorial modes of primordial metric perturbations in the Coupled-Scalar-Tachyon Bounce Universe. We solve for the gravitational wave equations in the pre-bounce contraction and the post-bounce expansion epochs. To match the solutions of the tensor perturbations, we idealise the bounce process yet retaining the essential physical properties of the bounce universe. We put forward two matching conditions: one ensures the continuity of the gravitational wave functions and the other respects the symmetric nature of the bounce dynamics. The matching conditions connect the two independent modes of gravitational waves solutions before and after the bounce. We further analyze the scale dependence and time dependence of the gravitational waves spectra in the bounce universe and compare them with the primordial spectrum in the single field inflation scenario. We discuss the implications to early universe physics and present model independent observational signatures extracted from the bounce universe.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3