https://doi.org/10.1140/epjc/s10052-022-10502-x
Regular Article - Experimental Physics
A machine learning-based methodology for pulse classification in dual-phase xenon time projection chambers
1
Laboratório de Instrumentação e Física Experimental de Partículas (LIP), University of Coimbra, 3004 516, Coimbra, Portugal
2
Department of Physics, University of Oxford, OX1 3RH, Oxford, UK
Received:
19
January
2022
Accepted:
7
June
2022
Published online:
24
June
2022
Machine learning techniques are now well established in experimental particle physics, allowing detector data to be analyzed in new and unique ways. The identification of signals in particle observatories is an essential data processing task that can potentially be improved using such methods. This paper aims at exploring the benefits that a dedicated machine learning approach might provide to the classification of signals in dual-phase noble gas time projection chambers. A full methodology is presented, from exploratory data analysis using Gaussian mixture models and feature importance ranking to the construction of dedicated predictive models based on standard implementations of neural networks and random forests, validated using unlabeled simulated data from the LZ experiment as a proxy to real data. The global classification accuracy of the predictive models developed in this work is estimated to be >99.0%, which is an improvement over conventional algorithms tested with similar data. The results from the clustering analysis were also used to identify anomalies in the data caused by miscalculated signal properties, showing that this methodology can also be used for data monitoring.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3