https://doi.org/10.1140/epjc/s10052-022-10434-6
Regular Article - Theoretical Physics
Event topology and constituent-quark scaling of elliptic flow in heavy-ion collisions at the Large Hadron Collider using a multiphase transport model
1
Department of Physics, Indian Institute of Technology Indore, Simrol, 453552, Indore, India
2
INFN-Sezione di Bologna, via Irnerio 46, 40126, Bologna, BO, Italy
3
CERN, 1211, Geneva 23, Switzerland
Received:
22
February
2022
Accepted:
13
May
2022
Published online:
13
June
2022
Transverse spherocity is an event shape observable, which separates the events based on their geometrical shapes. In this work, we use transverse spherocity to study the identified light flavor production in heavy-ion collisions using A Multi-Phase Transport (AMPT) model. We obtain the elliptic flow coefficients for pions, kaons and protons in Pb+Pb collisions at TeV as a function of transverse spherocity and collision centrality. Also, we study the number of constituent-quark (NCQ) scaling of elliptic flow which interprets the dominance of the quark degrees of freedom at the early stages of the collision. We observe a clear dependence of the elliptic flow for identified particles on transverse spherocity. It is found that the NCQ-scaling is strongly violated in events with low transverse spherocity compared to transverse spherocity-integrated events, confirming the fragmentation-based hadronization mechanism for high-momentum partons involved in the dynamics of jetty-like events.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3