https://doi.org/10.1140/epjc/s10052-022-10412-y
Regular Article - Theoretical Physics
Cosmological dynamical systems in modified gravity
1
Department of Mathematics, University College London, Gower Street, WC1E 6BT, London, UK
2
Department of Physics, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain
Received:
17
March
2022
Accepted:
6
May
2022
Published online:
1
June
2022
The field equations of modified gravity theories, when considering a homogeneous and isotropic cosmological model, always become autonomous differential equations. This relies on the fact that in such models all variables only depend on cosmological time, or another suitably chosen time parameter. Consequently, the field equations can always be cast into the form of a dynamical system, a successful approach to study such models. We propose a perspective that is applicable to many different modified gravity models and relies on the standard cosmological density parameters only, making our choice of variables model independent. The drawback of our approach is a more complicated constraint equation. We demonstrate our procedure studying various modified gravity models and show how much generic information can be extracted before a specific model is considered.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3