https://doi.org/10.1140/epjc/s10052-022-10344-7
Regular Article - Theoretical Physics
Bose–Einstein Condensate dark matter models in the presence of baryonic matter and random confining potentials
1
Department of Theoretical Physics, National Institute of Physics and Nuclear Engineering (IFIN-HH), 077125, Bucharest, Romania
2
Astronomical Observatory, 19 Ciresilor Street, 400487, Cluj-Napoca, Romania
3
Department of Physics, Babes-Bolyai University, 1 Kogalniceanu Street, 400084, Cluj-Napoca, Romania
Received:
6
October
2021
Accepted:
19
April
2022
Published online:
4
May
2022
We consider the effects of an uncorrelated random potential on the properties of Bose–Einstein Condensate (BEC) dark matter halos, which acts as a source of disorder, and which is added as a new term in the Gross–Pitaevskii equation, describing the properties of the halo. By using the hydrodynamic representation we derive the basic equation describing the density distribution of the galactic dark matter halo, by also taking into account the effects of the baryonic matter, and of the rotation. The density, mass and tangential velocity profiles are obtained exactly in spherical symmetry by considering a simple exponential density profile for the baryonic matter, and a Gaussian type disorder potential. To test the theoretical model we compare its predictions with a set of 39 galaxies from the Spitzer Photometry and Accurate Rotation Curves (SPARC) database. We obtain estimates of the relevant astrophysical parameters of the dark matter dominated galaxies, including the baryonic matter properties, and the parameters of the random potential. The BEC model in the presence of baryonic matter and a random confining potential gives a good statistical description of the SPARC data. The presence of the condensate dark matter could also provide a solution for the core/cusp problem.
© The Author(s) 2022
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3