https://doi.org/10.1140/epjc/s10052-021-09815-0
Regular Article - Theoretical Physics
Kantowski–Sachs Tsallis holographic dark energy model with sign-changeable interaction
1
Department of Engineering Mathematics and Humanities, Sagi Rama Krishnam Raju Engineering College, 534204, Bhimavaram, India
2
Department of Applied Mathematics, Andhra University, 530003, Visakhapatnam, India
Received:
29
September
2021
Accepted:
6
November
2021
Published online:
27
November
2021
In this work devoted to the investigation of the Tsallis holographic dark energy (IR cut-off is Hubble radius) in homogeneous and anisotropic Kantowski–Sachs Universe within the frame-work of Saez–Ballester scalar tensor theory of gravitation. We have constructed non-interacting and interacting Tsallis holographic dark energy models by solving the field equations using the relationship between the metric potentials. This relation leads to a viable deceleration parameter model which exhibits a transition of the Universe from deceleration to acceleration. In interacting case, we focus on sign-changeable interaction between Tsallis holographic dark energy and dark matter. The dynamical parameters like equation of state parameter, energy densities of Tsallis holographic dark energy and dark matter, deceleration parameter, and statefinder parameters of the models are explained through graphical representation. And also, we discussed the stability analysis of the our models.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3