https://doi.org/10.1140/epjc/s10052-023-11879-z
Regular Article - Theoretical Physics
Homogeneous and anisotropic cosmologies with affine EoS: a dynamical system perspective
Centre for Cosmology, Astrophysics and Space Science, GLA University, 281406, Mathura, Uttar Pradesh, India
Received:
21
May
2023
Accepted:
28
July
2023
Published online:
6
August
2023
We study a class of homogeneous and anisotropic geometries with affine equation of state (EoS) for different physically plausible scenarios of the universe evolution using dynamical system technique. We analyze the locally rotationally symmetric Bianchi I (LRS BI), Bianchi III (LRS BIII) and Bianchi V (LRS BV) geometry for the exhibition of the effects of affine EoS in the model. The model exhibits stable attractor which is also isotropic and thus, it may explain the late-time accelerated expansion of the universe. The model also possess stiff matter-, radiation- and matter-dominated phases prior to the dark energy assisted accelerating phase which are confirmed by the behaviours of effective equation of state and deceleration parameters. We use the statefinder diagnostic which is a geometrical diagnostic to explore model independent features of the cosmological dynamical system. The LRS BI, BIII and BV geometry based dynamical systems exhibit cold dark matter model) at late-times, which is compatible with the observations. The dynamical system for the Kantowski–Sachs model yields synchronous bounce on the basis of the model parameters. It also yields a late-time attractor which may explain the accelerated expansion of the universe in the model. The qualitative differences between LRS BIII and BV cosmological dynamical systems have also been discussed.
© The Author(s) 2023
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development.