https://doi.org/10.1140/epjc/s10052-021-09537-3
Regular Article - Theoretical Physics
Effects of the hyperscaling violation and dynamical exponents on the imaginary potential and entropic force of heavy quarkonium via holography
Sciences Faculty, Department of Physics, University of Mazandaran, Babolsar, Iran
a
m.kioumarsipour@stu.umz.ac.ir
Received:
1
March
2021
Accepted:
7
August
2021
Published online:
14
August
2021
The imaginary potential and entropic force are two important different mechanisms to characterize the dissociation of heavy quarkonia. In this paper, we calculate these two quantities in strongly coupled theories with anisotropic Lifshitz scaling and hyperscaling violation exponent using holographic methods. We study how the results are affected by the hyperscaling violation parameter and the dynamical exponent z at finite temperature and chemical potential. Also, we investigate the effect of the chemical potential on these quantities. As a result, we find that both mechanisms show the same results: the thermal width and the dissociation length decrease as the dynamical exponent and chemical potential increase or as the hyperscaling violating parameter decreases.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3