https://doi.org/10.1140/epjc/s10052-021-09502-0
Regular Article - Theoretical Physics
Quasi-local photon surfaces in general spherically symmetric spacetimes
Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, 230026, Hefei, Anhui, China
Received:
18
April
2021
Accepted:
28
July
2021
Published online:
9
August
2021
Based on the geometry of the codimension-2 surface in general spherically symmetric spacetime, we give a quasi-local definition of a photon sphere as well as a photon surface. This new definition is the generalization of the one provided by Claudel, Virbhadra, and Ellis but without referencing any umbilical hypersurface in the spacetime. The new definition effectively excludes the photon surface in spacetime without gravity. The application of the definition to the Lemaître–Tolman–Bondi (LTB) model of gravitational collapse reduces to a second order differential equation problem. We find that the energy balance on the boundary of the dust ball can provide one of the appropriate boundary conditions to this equation. Based on this crucial investigation, we find an analytic photon surface solution in the Oppenheimer–Snyder (OS) model and reasonable numerical solutions for the marginally bounded collapse in the LTB model. Interestingly, in the OS model, we find that the time difference between the occurrence of the photon surface and the event horizon is mainly determined by the total mass of the system but not the size or the strength of the gravitational field of the system.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3