https://doi.org/10.1140/epjc/s10052-021-09475-0
Regular Article - Theoretical Physics
Multi-particle production in proton–nucleus collisions in the color glass condensate
1
Instituto Galego de Física de Altas Enerxías IGFAE, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
2
National Centre for Nuclear Research, 02-093, Warsaw, Poland
Received:
29
March
2021
Accepted:
22
July
2021
Published online:
22
August
2021
We compute multi-gluon production in the Color Glass Condensate approach in dilute-dense collisions, , extending previous calculations up to four gluons. We include the contributions that are leading in the overlap area of the collision but keep all orders in the expansion in the number of colors. We develop a diagrammatic technique to write the numerous color contractions and exploit the symmetries to group the diagrams and simplify the expressions. To proceed further, we use the McLerran–Venugopalan and Golec–Biernat–Wüsthoff models for the projectile and target averages, respectively. We use a form of the Lipatov vertices that leads to the Wigner function approach for the projectile previously employed, that we generalise to take into account quantum correlations in the projectile wave function. We provide analytic expressions for integrated and differential two gluon cumulants and show a smooth dependence on the parameters defining the projectile and target Wigner function and dipole, respectively. For four gluon correlations we find that the second order four particle cumulant is negative, so a sensible second Fourier azimuthal coefficient can be defined. The effect of correlations in the projectile on this result results qualitatively and quantitatively large.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3