https://doi.org/10.1140/epjc/s10052-021-09674-9
Regular Article – Theoretical Physics
A quantum strategy to compute the jet quenching parameter
Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, 15782, Galicia, Spain
a
joaolourenco.henriques@usc.es
Received:
19
April
2021
Accepted:
21
September
2021
Published online:
1
October
2021
Jet quenching, the modification of the properties of a QCD jet when the parton cascade takes place inside a medium, is an intrinsically quantum process, where color coherence effects play an essential role. Despite a very significant progress in the last years, the simulation of a full quantum medium induced cascade remains inaccessible to classical Monte Carlo parton showers. In this situation, alternative formulations are worth being tried and the fast developments in quantum computing provide a very promising direction. The goal of this paper is to introduce a strategy to quantum simulate single particle momentum broadening, the simplest building block of jet quenching. Momentum broadening is the modification of the quark or gluon transverse momentum due interactions with the underlying medium, modeled as a QCD background field. At the lowest order in that we consider here, momentum broadening does not involve parton splittings and particle number is conserved, greatly simplifying the quantum algorithmic implementation. This quantity is, however, very relevant for the phenomenology of RHIC, LHC or the future EIC.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3