https://doi.org/10.1140/epjc/s10052-021-09407-y
Regular Article - Theoretical Physics
Ruppeiner geometry and thermodynamic phase transition of the black hole in massive gravity
1
School of Physics, Northwest University, 710127, Xi’an, China
2
Institute of Modern Physics, Northwest University, 710127, Xi’an, China
3
Shaanxi Key Laboratory for Theoretical Physics Frontiers, 710127, Xi’an, China
4
Peng Huanwu Center for Fundamental Theory, 710127, Xi’an, China
Received:
3
March
2020
Accepted:
4
July
2021
Published online:
18
July
2021
The phase transition and thermodynamic geometry of a 4-dimensional AdS topological charged black hole in de Rham, Gabadadze and Tolley (dRGT) massive gravity have been studied. After introducing a normalized thermodynamic scalar curvature, it is speculated that its value is related to the interaction between the underlying black hole molecules if the black hole molecules exist. We show that there does exist a crucial parameter given in terms of the topology, charge, and massive parameters of the black hole, which characterizes the thermodynamic properties of the black hole. It is found that when the parameter is positive, the singlet large black hole phase does not exist for sufficient low temperature and there is a weak repulsive interaction dominating for the small black hole which is similar to the Reissner–Nordström AdS black hole; when the parameter is negative, an additional phase region describing large black holes also implies a dominant repulsive interaction. These constitute the distinguishable features of dRGT massive topological black hole from those of the Reissner–Nordström AdS black hole as well as the Van der Waals fluid system.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3