https://doi.org/10.1140/epjc/s10052-021-09331-1
Regular Article - Theoretical Physics
Bulk entanglement and its shape dependence
Department of Astrophysics, School of Physics and Materials Science, Guangzhou University, 510006, Guangzhou, China
Received:
13
February
2021
Accepted:
12
June
2021
Published online:
5
July
2021
We study bulk entanglement entropy in even spacetime dimensions using the heat kernel method, which captures the universal piece of entanglement entropy, a logarithmically divergent term in even dimensions. In four dimensions, we perform explicit calculations for various shapes of boundary subregions. In particular, for a cusp subregion with an arbitrary opening angle, we find that the bulk entanglement entropy always encodes the same universal information about the boundary theories as the leading entanglement entropy in the large N limit, up to a fixed proportional constant. By smoothly deforming a circle in the boundary, we find that to leading order of the deformations, the bulk entanglement entropy shares the same shape dependence as the leading entanglement entropy and hence the same physical information can be extracted from both cases. This establishes an interesting local/nonlocal relation for holographic . However, the result does not hold for higher dimensional holographic theories.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3