https://doi.org/10.1140/epjc/s10052-021-09243-0
Regular Article - Theoretical Physics
Gravitationally induced entanglement dynamics between two quantum walkers
1
The Institute of Mathematical Sciences, CIT Campus, Taramani, 600113, Chennai, India
2
Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, 400094, Mumbai, India
Received:
29
January
2021
Accepted:
15
May
2021
Published online:
26
May
2021
Quantum walk is a synonym for multi-path interference and faster spread of a particle in a superposition of position space. We study the effects of a quantum mechanical interaction modeled to mimic quantum mechanical gravitational interaction between the two states of the walkers. The study has been carried out to investigate the entanglement generation between the two quantum walkers that do not otherwise interact. We see that the states do in fact get entangled more and more as the quantum walks unfold, and there is an interesting dependence of entanglement generation on the mass of the two particles performing the walks. With the introduction of noise into the dynamics, we also show the sensitivity of entanglement between the two walkers on the noise introduced in one of the walks. The signature of quantum effects due to gravitational interactions highlights the potential role of quantum systems in probing the nature of gravity.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3