https://doi.org/10.1140/epjc/s10052-021-09238-x
Regular Article - Theoretical Physics
Higher-order regularity in local and nonlocal quantum gravity
Department of Physics, Southern University of Science and Technology, 518055, Shenzhen, China
Received:
11
January
2021
Accepted:
13
May
2021
Published online:
26
May
2021
In the present work we investigate the Newtonian limit of higher-derivative gravity theories with more than four derivatives in the action, including the non-analytic logarithmic terms resulting from one-loop quantum corrections. The first part of the paper deals with the occurrence of curvature singularities of the metric in the classical models. It is shown that in the case of local theories, even though the curvature scalars of the metric are regular, invariants involving derivatives of curvatures can still diverge. Indeed, we prove that if the action contains derivatives of the metric in both the scalar and the spin-2 sectors, then all the curvature-derivative invariants with at most 2n covariant derivatives of the curvatures are regular, while there exist scalars with
derivatives that are singular. The regularity of all these invariants can be achieved in some classes of nonlocal gravity theories. In the second part of the paper, we show that the leading logarithmic quantum corrections do not change the regularity of the Newtonian limit. Finally, we also consider the infrared limit of these solutions and verify the universality of the leading quantum correction to the potential in all the theories investigated in the paper.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3