https://doi.org/10.1140/epjc/s10052-021-09176-8
Regular Article - Theoretical Physics
Nonrelativistic treatment of fully-heavy tetraquarks as diquark-antidiquark states
Department of Physics, Faculty of Science and Letters, Ondokuz Mayis University, 55139, Samsun, Turkey
Received:
15
February
2021
Accepted:
21
April
2021
Published online:
27
April
2021
The goal of the present work is to obtain a reliable estimate of the masses of the ground and radially excited states of fully-heavy tetraquark systems. In order to do this, we use a nonrelativistic model of tetraquarks which are assumed to be compact and consist of diquark-antidiquark pairs. This nonrelativistic model is composed of Hulthen potential, a linear confining potential and spin-spin interaction. We computed ground, first, and second radially excited and
tetraquark masses. It was found that predicted masses of ground states of
and
tetraquarks are significantly higher than the thresholds of the fall-apart decays to the lowest allowed two-meson states. These states should be broad and are thus difficult to observe experimentally. First radially excited states are considerably lower than their corresponding (2S-2S) two-meson thresholds. We hope that our study may be helpful to the experimental search for ground and excited
and
tetraquark states.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3