https://doi.org/10.1140/epjc/s10052-021-09059-y
Regular Article – Theoretical Physics
Dynamic wormhole geometries in hybrid metric-Palatini gravity
1
Physics Department, Faculty of Science, Shahid Chamran University of Ahvaz, 61357-43135, Ahvaz, Iran
2
Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências da Universidade de Lisboa, Edifício C8, Campo Grande, 1749-016, Lisbon, Portugal
Received:
3
January
2021
Accepted:
13
March
2021
Published online:
3
April
2021
In this work, we analyse the evolution of time-dependent traversable wormhole geometries in a Friedmann–Lemaître–Robertson–Walker background in the context of the scalar–tensor representation of hybrid metric-Palatini gravity. We deduce the energy–momentum profile of the matter threading the wormhole spacetime in terms of the background quantities, the scalar field, the scale factor and the shape function, and find specific wormhole solutions by considering a barotropic equation of state for the background matter. We find that particular cases satisfy the null and weak energy conditions for all times. In addition to the barotropic equation of state, we also explore a specific evolving wormhole spacetime, by imposing a traceless energy–momentum tensor for the matter threading the wormhole and find that this geometry also satisfies the null and weak energy conditions at all times.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3