https://doi.org/10.1140/epjc/s10052-021-09044-5
Regular Article – Theoretical Physics
Acceptability conditions and relativistic barotropic equations of state
1
Escuela de Física, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
2
Departamento de Física, Universidad de Los Andes, 5101, Mérida, Venezuela
Received:
7
November
2020
Accepted:
9
March
2021
Published online:
18
March
2021
We sketch an algorithm to generate exact anisotropic solutions starting from a barotropic EoS and setting an ansatz on the metric functions. To illustrate the method, we use a generalization of the polytropic equation of state consisting of a combination of a polytrope plus a linear term. Based on this generalization, we develop two models which are not deprived of physical meaning as well as fulfilling the stringent criteria of physical acceptability conditions. We also show that some relativistic anisotropic polytropic models may have singular tangential sound velocity for polytropic indexes greater than one. This happens in anisotropic matter configurations when the polytropic equation of state is implemented together with an ansatz on the metric functions. The generalized polytropic equation of state is free from this pathology in the tangential sound velocity.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3