https://doi.org/10.1140/epjc/s10052-021-08914-2
Regular Article – Theoretical Physics
Cosmological constraints on GUP from modified Friedmann equations
Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451, Szczecin, Poland
Received:
31
October
2020
Accepted:
24
January
2021
Published online:
2
February
2021
The Generalized Uncertainty Principle (GUP) has emerged in numerous attempts to a theory of quantum gravity and predicts the existence of a minimum length in Nature. In this work, we consider two cosmological models arising from Friedmann equations modified by the GUP (in its linear and quadratic formulations) and compare them with observational data. Our aim is to derive constraints on the GUP parameter and discuss the viability and physical implications of such models. We find for the parameter in the quadratic formulation the constraint (tighter than most of those obtained in an astrophysical context) while the linear formulation does not appear compatible with present cosmological data. Our analysis highlights the powerful role of high-precision cosmological probes in the realm of quantum gravity phenomenology.
© The Author(s) 2021
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3