https://doi.org/10.1140/epjc/s10052-020-08479-6
Regular Article - Theoretical Physics
Exploring the potentiality of standard sirens to probe cosmic opacity at high redshifts
1
Institute of Physics, Hunan University of Science and Technology, 411201, Xiangtan, Hunan, China
2
School of Science, Kaili University, 556011, Kaili, Guizhou, China
Received:
7
February
2020
Accepted:
2
September
2020
Published online:
26
September
2020
In this work, using the Gaussian process, we explore the potentiality of future gravitational wave (GW) measurements to probe cosmic opacity at high redshifts through comparing its opacity-free luminosity distance (LD) with the opacity-dependent one from the combination of Type Ia supernovae (SNIa) and gamma-ray bursts (GRBs). The GW data, SNIa and GRB data are simulated from the measurements of the future Einstein Telescope, the actual Pantheon compilation and the latest observation of GRBs compiled by Amati et al, respectively. A nonparametric method is proposed to probe the spatial homogeneity of cosmic transparency at high redshift by comparing the LD reconstructed from the GW data with that reconstructed from the Pantheon and GRB data. In addition, the cosmic opacity is tested by using the parametrization for the optical depth, and the results show that the constraints on cosmic opacity are more stringent than the previous ones. It shows that the future GW measurements may be used as an important tool to probe the cosmic opacity in the high redshift region.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3