https://doi.org/10.1140/epjc/s10052-020-08461-2
Regular Article - Experimental Physics
Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data
CERN, Experimental Physics Department, Geneva, Switzerland
Received:
15
April
2020
Accepted:
10
September
2020
Published online:
24
September
2020
High-energy physics detectors, images, and point clouds share many similarities in terms of object detection. However, while detecting an unknown number of objects in an image is well established in computer vision, even machine learning assisted object reconstruction algorithms in particle physics almost exclusively predict properties on an object-by-object basis. Traditional approaches from computer vision either impose implicit constraints on the object size or density and are not well suited for sparse detector data or rely on objects being dense and solid. The object condensation method proposed here is independent of assumptions on object size, sorting or object density, and further generalises to non-image-like data structures, such as graphs and point clouds, which are more suitable to represent detector signals. The pixels or vertices themselves serve as representations of the entire object, and a combination of learnable local clustering in a latent space and confidence assignment allows one to collect condensates of the predicted object properties with a simple algorithm. As proof of concept, the object condensation method is applied to a simple object classification problem in images and used to reconstruct multiple particles from detector signals. The latter results are also compared to a classic particle flow approach.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3