https://doi.org/10.1140/epjc/s10052-020-7676-5
Regular Article - Theoretical Physics
Nucleon’s energy–momentum tensor form factors in light-cone QCD
1
Department of Physics, University of Tehran, North Karegar Avenue, 14395-547, Tehran, Iran
2
Department of Physics, Dogus University, Acibadem-Kadikoy, 34722, Istanbul, Turkey
3
Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy-Kucukcekmece, 34295, Istanbul, Turkey
Received:
22
August
2019
Accepted:
25
January
2020
Published online:
7
February
2020
We use the energy–momentum tensor (EMT) current to compute the EMT form factors of the nucleon in the framework of the light cone QCD sum rule formalism. In the calculations, we employ the most general form of the nucleon’s interpolating field and use the distribution amplitudes (DAs) of the nucleon with two sets of the numerical values of the main input parameters entering the expressions of the DAs. The directly obtained results from the sum rules for the form factors are reliable at GeV
: to extrapolate the results to include the zero momentum transfer squared with the aim of estimation of the related static physical quantities, we use some fit functions for the form factors. The numerical computations show that the energy–momentum tensor form factors of the nucleon can be well fitted to the multipole fit form. We compare the results obtained for the form factors at
with the existing theoretical predictions as well as experimental data on the gravitational form factor d
. For the form factors M
and J
a consistency among the theoretical predictions is seen within the errors: our results are nicely consistent with the Lattice QCD and chiral perturbation theory predictions. However, there are large discrepancies among the theoretical predictions on d
. Nevertheless, our prediction is in accord with the JLab data as well as with the results of the Lattice QCD, chiral perturbation theory and KM15-fit. Our fit functions well define most of the JLab data in the interval
GeV
, while the Lattice results suffer from large uncertainties in this region. As a by-product, some mechanical properties of the nucleon like the pressure and energy density at the center of nucleon as well as its mechanical radius are also calculated and their results are compared with other existing theoretical predictions.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3