https://doi.org/10.1140/epjc/s10052-020-7672-9
Regular Article - Theoretical Physics
Beyond
: learning to search for a broad
resonance at the LHC
Center for Theoretical Physics, Department of Physics and Astronomy, Seoul National University, 08826, Seoul, South Korea
Received:
2
August
2019
Accepted:
25
January
2020
Published online:
8
February
2020
A resonance peak in the invariant mass spectrum has been the main feature of a particle at collider experiments. However, broad resonances not exhibiting such a sharp peak are generically predicted in new physics models beyond the Standard Model. Without a peak, how do we discover a broad resonance at colliders? We use machine learning technique to explore answers beyond common knowledge. We learn that, by applying deep neural network to the case of a resonance, the invariant mass
is still useful, but additional information from off-resonance region, angular correlations,
, and top jet mass are also significantly important. As a result, the improved LHC sensitivities do not depend strongly on the width. The results may also imply that the additional information can be used to improve narrow-resonance searches too. Further, we also detail how we assess machine-learned information.
© The Author(s) 2020
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3