DOI 10.1007/s100529800968
Quantum orthogonal planes:
ISOq,r(N) and SOq,r(N) -
bicovariant calculi
and differential geometry on quantum Minkowski space
P. Aschieri1 - L. Castellani2 - A.M. Scarfone3
1 Theoretical Physics Group, Physics Division,
Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
Berkeley,
California 94720, USA
(e-mail: aschieri@lbl.gov)
2 Dipartimento di Scienze e Tecnologie Avanzate*,
Università di Torino and
Dipartimento di Fisica Teorica and Istituto Nazionale di
Fisica Nucleare,
Via P. Giuria 1, I-10125 Torino, Italy
(e-mail: castellani@to.infn.it)
3 Dipartimento di Fisica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
(e-mail: scarfone@polito.it)
Received: 4 November 1997 / Revised version: 22 April 1998 / Published online: 3 December 1998
Abstract
We construct differential calculi on multiparametric quantum
orthogonal planes in any dimension N. These calculi are
bicovariant under the action of the full inhomogeneous
(multiparametric) quantum group ISOq,r(N), and do contain
dilatations.
If we require bicovariance only
under the quantum orthogonal group SOq,r(N), the calculus
on the q-plane can be expressed in terms of its coordinates xa,
differentials dxa and partial derivatives without
the need of dilatations, thus generalizing
known results to the multiparametric case.
Using real forms that lead to the signature
(n+1,m) with
n,n+1, we find
ISOq,r(n+1, m) and SOq,r(n+1,m) bicovariant calculi
on the multiparametric quantum spaces. The particular case of
the quantum Minkowski space ISOq,r(3,1)/SOq,r(3,1) is
treated
in detail.
The conjugated partial derivatives
can
be expressed as linear combinations of the
.This allows a deformation of the phase-space where no additional
operators
(besides xa and pa) are needed.
Copyright Springer-Verlag