2018 Impact factor 4.843
Particles and Fields
Eur. Phys. J. C 7, 177-183
DOI 10.1007/s100529800960

q-deformed Lorentz-algebra in Minkowski phase space

M. Rohregger1 - J. Wess2,3

1 Physiologisches Institut der Ludwig-Maximilians-Universität, Pettenkoferstr. 12, D-80336 München
2 Sektion Physik der Ludwig-Maximilians-Universität, Theresienstr. 37, D-80333 München
3 Max-Planck-Institut für Physik, (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München

Received: 12 June 1998 / Published online: 5 October 1998

In the present paper we show that the Lorentz algebra $\cal L$ as defined in [#!oschmi!#] is isomorphic to an algebra $\hat{\cal U}$ closely related to a q-deformed $SU_q(2) \otimes
 SU_q(2)$ algebra. On this algebra $\hat{\cal U}$ we define a Hopf algebra structure and show its action on q-spinor modules. This algebra is related to the q-deformed Minkowski space algebra by a non invertible factorisation.

Copyright Springer-Verlag