https://doi.org/10.1140/epjc/s10052-025-14260-4
Regular Article - Theoretical Physics
Impact of strong magnetic field, baryon chemical potential, and medium anisotropy on polarization and spin alignment of hadrons
Department of Physics, Indian Institute of Technology Indore, 453552, Indore, India
Received:
3
January
2025
Accepted:
4
May
2025
Published online:
27
May
2025
The recent observation of global spin polarization of (
) hyperons and the spin alignment of
and
vector mesons create remarkable interest in investigating the particle polarization in the relativistic fluid produced in heavy-ion collisions at GeV/TeV energies. Among other sources of spin polarization phenomena, the Debye mass of a medium plays a crucial role in particle polarization. Any modification brought to the effective mass due to the temperature, strong magnetic field (eB), baryonic chemical potential (
), medium anisotropy (
), and vorticity, etc., certainly affects the particle spin polarization. In this work, we explore the global hyperon spin polarization and the spin alignment of vector mesons corresponding to the strong magnetic field, baryonic chemical potential, and medium anisotropy. We find that the degree of spin polarization is flavor-dependent for hyperons. Meanwhile, vector meson spin alignment depends on the hadronization mechanisms of initially polarized quarks and anti-quarks. Medium anisotropy significantly changes the degree of spin polarization compared to the magnetic field and baryon chemical potential.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.