https://doi.org/10.1140/epjc/s10052-025-14148-3
Regular Article - Theoretical Physics
RG-stable parameter relations of a scalar field theory in absence of a symmetry
1
Santa Cruz Institute for Particle Physics, University of California, 1156 High Street, 95064, Santa Cruz, CA, USA
2
Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
3
Centro de Física Teórica e Computacional, Universidade de Lisboa, Lisbon, Portugal
Received:
21
February
2025
Accepted:
29
March
2025
Published online:
15
May
2025
The stability of tree-level relations among the parameters of a quantum field theory with respect to renormalization group (RG) running is typically explained by the existence of a symmetry. We examine a toy model of a quantum field theory of two real scalars in which a tree-level relation among the squared-mass parameters of the scalar potential appears to be RG-stable without the presence of an appropriate underlying symmetry. The stability of this relation with respect to renormalization group running can be explained by complexifying the original scalar field theory. It is then possible to exhibit a symmetry that guarantees the relations of relevant beta functions of squared-mass parameters of the complexified theory. Among these relations, we can identify equations that are algebraically identical to the corresponding equations that guarantee the stability of the relations among the squared-mass parameters of the original real scalar field theory where the symmetry of the complexified theory is no longer present.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.