https://doi.org/10.1140/epjc/s10052-025-14170-5
Regular Article - Theoretical Physics
Fast interpolation grids for the Drell–Yan process
1 Theoretical Physics Department, CERN, 1211, Geneva 23, Switzerland
2 Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074, Würzburg, Germany
Received:
28
January
2025
Accepted:
7
April
2025
Published online: 25 April 2025
Modern analyses of experimental data from hadron colliders rely on theory predictions at high orders in perturbation theory and a variety of input settings. Interpolation grids facilitate an almost instant re-evaluation of theory predictions for different input parton distributions functions (PDFs) or scale settings and are thus indispensable in the study of the parton content of the proton. While interpolation grids at next-to-next-to-leading order (NNLO) exist for some key processes relevant for PDF determinations, a notable exception is the Drell–Yan process that constitutes the production of electroweak gauge bosons at hadron colliders and provides important constraints on the quark content of the proton. To address this gap, we report on a new interface between the parton-level Monte Carlo generator NNLOJET and the interpolation grid library PINEAPPL and demonstrate its use for the Drell–Yan process. Accompanying this note, we release Drell–Yan grids covering a wide range of measurements that commonly enter global determinations of PDFs. We use the grids to study accidental cancellation between partonic channels at NNLO and inspect the validity of a K-factor approximation that was widely employed previously.
© The Author(s) 2025
Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.