https://doi.org/10.1140/epjc/s10052-025-14051-x
Regular Article - Experimental Physics
Bulk-surface event discrimination in point contact germanium detectors at near-threshold energies with shape-matching pulse-shape methods
1
Institute of Physics, Academia Sinica, 115201, Taipei, Taiwan
2
Department of Physics, Banaras Hindu University, 221005, Varanasi, India
a
jswang2024@gate.sinica.edu.tw
b
manu@gate.sinica.edu.tw
c
lihb@gate.sinica.edu.tw
d
htwong@gate.sinica.edu.tw
Received:
25
November
2024
Accepted:
10
March
2025
Published online:
22
March
2025
The p-type point-contact germanium (pPCGe) detectors have been widely adopted in searches for low energy physics events such as neutrinos and dark matter. This is due to their enhanced capabilities of background rejection, sensitivity at energies as low as the sub-keV range and particularly fine energy resolution. Nonetheless, the pPCGe is subject to irregular behaviour caused by surface effects for events near the passivated surface. These surface events can, in general, be distinguished from events that occur in the germanium crystal bulk by its slower pulse rise time. Unfortunately, the rise-time spectra of bulk and surface events starts to convolve with each other at sub-keV energies. In this work, we propose a novel method based on cross-correlation shape-matching combined with a low-pass filter to constrain the initial parameter estimates of the signal pulse. This improvement at the lowest level leads to a 50% reduction in computation time and refinements in the rise-time resolution, which will, in the end, enhance the overall analysis. To evaluate the performance of the method, we simulate artificial pulses that resembles bulk and surface pulses by using a programmable pulse generator module (pulser). The pulser-generated pulses are then used to examine the pulse behaviours at near-threshold energies, suggesting a roughly 70% background-leakage reduction in the bulk spectrum. Finally, the method is tested on data collected from the TEXONO experiment, where the results are consistent with our observations in pulser and demonstrated the possibility of lowering the analysis threshold by at least 10 eV.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.