https://doi.org/10.1140/epjc/s10052-025-13826-6
Regular Article - Theoretical Physics
Generalized volume-complexity for Lovelock black holes
Department of Physics, School of Sciences, Tarbiat Modares University, P.O.Box 14155-4838, Tehran, Iran
Received:
30
September
2024
Accepted:
16
January
2025
Published online:
30
January
2025
We study the time dependence of the generalized complexity of Lovelock black holes using the “complexity = anything” conjecture, which expands upon the notion of “complexity = volume” and generates a large class of observables. By applying a specific condition, a more limited class can be chosen, whose time growth is equivalent to a conserved momentum. Specifically, we investigate the numerical full time behavior of complexity time rate, focusing on the second and third orders of Lovelock theory coupled with Maxwell term, incorporating an additional term – the square of the Weyl tensor of the background spacetime – into the generalization function. Furthermore, we repeat the analysis for case with three additional scalar terms: the square of Riemann and Ricci tensors, and the Ricci scalar for second-order gravity (Gauss–Bonnet) showing how these terms can affect to multiple asymptotic behavior of time. We study how the phase transition of generalized complexity and its time evolution occur at turning point where the maximal generalized volume supersedes another branch. Additionally, we discuss the late time behavior, focusing on proportionality of the complexity time rate to the difference of temperature times entropy at the two horizons
for charged black holes, which can be corrected by generalization function of each radius in generalized case. In this limit, we also explore near singularity structure by approximating spacetime to Kasner metrics and finding possible values of complexity growth rate with different choices of the generalization function.
© The Author(s) 2025
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.