https://doi.org/10.1140/epjc/s10052-024-13655-z
Regular Article
Quasinormal modes of three
-dimensional black holes in string theory, conformal gravity, and Hu–Sawicki F(R) theory via the Heun function
Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran
Received:
17
September
2024
Accepted:
11
November
2024
Published online:
11
December
2024
We study the propagation of massless fermionic fields, implementing a family of special functions: Heun functions, in solving the wave equation in three three-dimensional backgrounds, including the BTZ black hole in string theory and Lifshitz black hole solutions in conformal gravity and Hu–Sawicki F(R) theory. The main properties of the selected black hole solutions is that their line elements are Weyl related to that of a homogeneous spacetime, whose spatial part possesses Lie symmetry, described by Lobachevsky-type geometry with arbitrary negative Gaussian curvature. Using the Weyl symmetry of massless Dirac action, we consider the perturbation equations of fermionic fields in relation to those of the homogeneous background, which having definite singularities, are transformed into Heun’s equation. We point out the existence of quasinormal modes labeled by the accessory parameter of the Heun function. The distribution of the quasinormal modes has been clarified to satisfy the boundary conditions that require ingoing and decaying waves at the event horizon and conformal infinity, respectively. It turned out that the procedure based on the Heun function, beside reproducing the previously known results obtained via hypergeometric function for the BTZ and Lifshitz black hole solution in conformal gravity, brings up new families of quasinormal frequencies, which can also contain purely imaginary modes. Also, the analysis of the quasinormal modes shows that with the negative imaginary part of complex frequencies , the fermionic perturbations are stable in this background.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.