https://doi.org/10.1140/epjc/s10052-024-13543-6
Regular Article
Hadron-ion collisions in Pythia and the vector-meson dominance model for photoproduction
1
Department of Physics, University of Jyvaskyla, P.O. Box 35, Fl-40014, Jyvaskyla, Finland
2
Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, Helsinki, Finland
3
, Vikaveien 214, 9303, Silsand, Norway
Received:
22
June
2024
Accepted:
15
October
2024
Published online:
15
November
2024
We present an extension to the Pythia Monte Carlo event generator that enables simulations of collisions between a generic hadron beam on a nuclear target with energy variation in event-by-event basis. This builds upon Pythia ’s module for heavy ions, Angantyr, as well as previous work on simulating hadron-proton collisions. As such, the extensions in this work are largely technical, except for a rudimentary model for hadronic fluctuations. With hadron-ion simulations, we implement an explicit vector-meson dominance (VMD) model that can be used to simulate interactions of hadronic component of real photons in photo-nuclear collisions. Such processes can be studied in ultra-peripheral heavy-ion collisions and in the future also with the upcoming Electron-Ion Collider. Our work also has applications to hadronic showers, e.g. air showers initiated by high-energy cosmic rays. We first validate the VMD model by comparing to HERA photoproduction data on proton target. Then we apply this to generate events for ultra-peripheral heavy-ion collisions at the LHC and present the results corresponding to the event-selection criteria matching to a recent ATLAS analysis. We find that single-particle multiplicity and rapidity distributions are well in line with the measured ones. We also construct the Fourier coefficients from two-particle correlations for the simulated events and study whether the resulting azimuthal anisotropies are consistent with the ATLAS results.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.