https://doi.org/10.1140/epjc/s10052-024-13361-w
Regular Article
Effects of dark matter on the spontaneous scalarization in neutron stars
1
Department of Physics, College of Science, Shiraz University, 71454, Shiraz, Iran
2
Biruni Observatory, College of Science, Shiraz University, 71454, Shiraz, Iran
Received:
17
April
2024
Accepted:
11
September
2024
Published online:
1
October
2024
Dark matter, an important portion of compact objects, can influence different phenomena in neutron stars. The spontaneous scalarization in the scalar-tensor gravity has been proposed for neutron stars. Here, we investigate the spontaneous scalarization in dark matter admixed neutron stars. Applying the dark matter equations of state, we calculate the structure of scalarized neutron stars containing dark matter. The dark matter equations of state are based on observational data from the rotational curves of galaxies and the fermionic self-interacting dark matter. Our results verify that the spontaneous scalarization is affected by the dark matter pressure in neutron stars. Depending on the central density of scalarized dark matter admixed neutron stars, the dark matter pressure alters the central scalar field. The increase of dark matter pressure in low-density scalarized stars amplifies the central scalar field. However, the pressure of dark matter in high-density scalarized stars suppresses the central scalar field. Our calculations confirm that the stars in the merger event GW170817 and in the low-mass X-ray binary 4U 1820-30 can be scalarized dark matter admixed neutron stars.
© The Author(s) 2024
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funded by SCOAP3.